Quiver varieties and crystals in symmetrizable type via modulated graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial realizations of crystals via torus actions on quiver varieties

Let V (λ) be a highest-weight representation of a symmetric Kac–Moody algebra, and let B(λ) be its crystal. There is a geometric realization of B(λ) using Nakajima’s quiver varieties. In many particular cases one can also realize B(λ) by elementary combinatorial methods. Here we study a general method of extracting combinatorial realizations from the geometric picture: we use Morse theory to in...

متن کامل

Quiver Varieties of Type A

We prove a conjecture of Nakajima describing the relation between the geometry of quiver varieties of type A and the geometry of partial flags varieties and nilpotent variety. The kind of quiver varieties we are interested in, have been introduced by Nakajima as a generalization of the description of the moduli space of anti-self-dual connections on ALE spaces constructed by Kroneheimer and Nak...

متن کامل

0 Quiver Varieties of Type A

We prove a conjecture of Nakajima describing the relation between the geometry of quiver varieties of type A and the geometry of the partial flags varieties and of the nilpotent variety. The kind of quiver varieties we are interested in, have been introduced by Nakajima as a generalization of the description of the moduli space of anti-self-dual connections on ALE spaces constructed by Kronehei...

متن کامل

Lecture 10: Highest Weight Crystals from Quiver Varieties

We saw in lectures 7 and 8 how Lusztig’s nilpotent variety can be used to realize U−(g) and the crystal B(∞). Last week we saw how to use quiver grassmannians to realize the highest weight modules V (λ) as a quotient of U−(g), and the same construction realizes the crystals B(λ). This week we discuss a more standard approach to realizing V (λ) and B(λ), namely we will use Nakajima’s quiver vari...

متن کامل

Quiver Varieties and Branching

Braverman-Finkelberg [4] recently propose the geometric Satake correspondence for the affine Kac-Moody group Gaff . They conjecture that intersection cohomology sheaves on the Uhlenbeck compactification of the framed moduli space of Gcpt-instantons on R /Zr correspond to weight spaces of representations of the Langlands dual group G∨aff at level r. When G = SL(l), the Uhlenbeck compactification...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Research Letters

سال: 2018

ISSN: 1073-2780,1945-001X

DOI: 10.4310/mrl.2018.v25.n1.a7